Growth hormone releasing peptide-6 acts as a survival factor in glutamate-induced excitotoxicity.
نویسندگان
چکیده
Chronic systemic treatment given to adult male rats with growth hormone releasing peptide-6, an agonist of the ghrelin receptor, increases insulin-like growth factor I levels in various brain regions, including the hypothalamus and cerebellum. Furthermore, intracellular signalling cascades normally associated with anti-apoptotic actions are activated in the same areas and are coincident with decreased basal cell death. Because abnormally high concentrations of glutamate can lead to overexcitation of neurones leading to cell damage and/or death, we investigated whether administration of growth hormone releasing peptide-6 attenuates monosodium glutamate-induced apoptosis in the rat hypothalamus and cerebellum. Glutamate increased activation of caspase 9 followed by cleavage of caspase 7, which in turn fragmented poly(ADP-ribose) polymerase, terminating in cell death in both the hypothalamus and cerebellum. Growth hormone releasing peptide-6 reversed glutamate-induced cell death by decreasing activation of caspases 9 and 7 and poly(ADP-ribose) polymerase fragmentation. These results provide a better understanding of the neuroprotective role of growth hormone secretagogues and the mechanisms involved.
منابع مشابه
Mystixin-7 Peptide Protects Ionotropic Glutamatergic Mechanisms against Glutamate-Induced Excitotoxicity In Vitro
Hyperactivation of the N-methyl-D-aspartic acid type glutamate receptors (NMDARs) causes glutamate excitotoxicity, a process potentially important for many neurological diseases. This study aims to investigate protective effects of the synthetic corticotrophin-releasing factor-like peptide, mystixin-7 (MTX), on model glutamate-induced excitotoxicity in vitro. The technique online monitoring of ...
متن کاملPotential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review
Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activat...
متن کاملGrowth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism.
Taurine, brain derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) are known to control the development of early postnatal cerebellar granule cells. This study attempted to investigate possible mechanisms of this control by determining neuronal survival, calcium homeostasis, and related calcium-mediated functions, as well as the site of action during glutamate-induced ...
متن کاملSex Differences and Role of Gonadal Hormones on Glutamate Level After Spinal Cord Injury in Rats: A Microdialysis Study
Introduction: Sex differences in outcomes of Spinal Cord Injury (SCI) suggest a sex-hormone-mediated effect on post-SCI pathological events, including glutamate excitotoxicity. This study aimed to investigate the importance of gonadal hormones on glutamate release subsequent to SCI in rats. Methods: After laminectomy at T8-T9, an electrolytic lesion was applied to the spinothalamic tracts of m...
متن کاملGrowth hormone (GH) and GH-releasing peptide-6 increase brain insulin-like growth factor-I expression and activate intracellular signaling pathways involved in neuroprotection.
Beneficial effects of GH on memory, mental alertness, and motivation have been documented. Many actions of GH are mediated through IGF-I; hence, we investigated whether systemic administration of GH or GH-releasing peptide (GHRP)-6 modulates the brain IGF system. Treatment of adult male rats with GHRP-6 or GH for 1 wk significantly increased IGF-I mRNA levels in the hypothalamus, cerebellum, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurochemistry
دوره 99 3 شماره
صفحات -
تاریخ انتشار 2006